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Almtraet--To improve the understanding of two-phase critical flow phenomena, both single- and two-phase 
flows are studied in parallel. This can be done only ff compatible mathematical models are used for both 
flows. In particular, since the evolution of the fluid or of the mixture is, in fact, a consequence of the transfers 
at the wall and at the interface, it is more rational to postulate transfer laws than to assume fluid, or mixture, 
evolutions. 

It is shown that the mathematical form of the above transfer laws is of primary importance, and it is 
proposed to allow for the presence, in the transfer terms, of partial derivatives of dependent variables. 

The critical flow condition is discussed within the above framework. A necessary critical flow criterion is 
obtained by equating to zero the determinant of the set of equations describing the steady.state flow. This 
criterion must be comvlemented by the study of the compatib~ty conditions of the set. 

It is verified that a flow is critical when disturbances, initiated downstream of some "critical" section, 
cannot Wopagate upstream of this section. A decrease of the outlet pressure has therefore no effect on the 
flow parameters upstream of the critical section, and the flow rate is maximum. 

Examples are given to demonstrate the potem~ities of the method. It is shown that appropriate 
assumptions on the transfer laws enable existing models to be discussed. 

1. INTRODUCTION 

The fiow-rate of a compressible fluid in a pipe cs, nnot, for given upstream conditions, be 

increased above some maximum, "critical" value. 
In gas dynamics, this phenomenon has been studied extensively and may be considered as 

well known. It  may occur when large expansion takes place somewhere in the fluid (engine 

exhaust, safety valves, restrictions, nozz les . . . )  and finds application in for instance, some control 
(sonic valves) and measurement devices. 

When a two-phase fluid is compressible (e.g. gas-liquid) its flow may be subject to the same 

phenomenon. The latter occurs for example during the blow-down of high-pressure vessel 
containing a high-temperature liquid or two-phase mixture. It may also occur under less drastic 

conditions (see Costa & Charlety 1971). 
For these reasons, the knowledge of the two-phase maximum flow-rate (for a given system 

under given conditions) is of paramount importance, in particular in the field of nuclear safety. As 

a consequence, a large number of experimental and theoretical papers on two-phase maximum 
flow-rates and related phenomena have been published. Among other results, previous works 

show the importance of slip, thermal non-equilibria, relaxation processes or, in other words, of 
the laws of the mass, momentum and energy transfers between the phases. An account of these 
works may be found in Fritte (1974) and R~.ocreux (19"/4). 

However,  the picture resulting from a literature search is still far from clear, and it has been 
felt useful to re-examine the problem, starting from what is well known (single-phase) and taking 
into account the specific two-phase aspects. 

There are several equivalent definitions of critical conditions for single-phase flows. It cannot 
be a priori assumed that all of these definitions are also equivalent in the case of two-phase flow. 

For single-phase flows, the accepted interpretation of the critical conditions may be 

summarized as follows: 
1. The occurrence of a maxinmm flow-rate results from the so-called "choking" 
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phenomenon: a flow is choked when disturbances initiated downstream of some "critical" 
section cannot propagate upstream of this section. Thus a decrease of the outlet pressure, for 
example, has no effect on the flow parameters upstream of the critical section. As a result, the 
flow-rate cannot be increased further. 

2. If the flow can be considered as one-dimensional, its velocity in the critical section, when 
choked, is equal to the propagation velocity of small pressure disturbances (velocity of sound). 

3. The velocity of a disturbance depends, of course, on the nature of the thermodynamic 
evolution of the fluid within the disturbance. Since Laplace, the evolution in a sonic disturbance, 
because of its smallness, is generally supposed to be isentropic. 

4. However, other kinds of evolution have been postulated. An example is the isothermal 
evolution (Newton). 

The nature of the evolution of the fluid is usually specified a priori in the single phase models. 
A more general and rational procedure, however, is to postulate the transfer laws (cause) rather 
than the nature of the evolution (effect). This procedure yields models which include as particular 
cases all the conceivable evolutions. It is not compulsory for single phase flows, since the nature 
of the evolution is often known in practice. Such is not the case for two-phase flows, for which no 
simple assumptions can he made on the thermodynamic evolutions of the phases because of the 
importance, pointed out above, of the non-equilibrium processes. In this case, it is necessary to 
take into account the transfer laws themselves, rather than their consequences (evolution). 

The purpose of this paper can now be stated explicitly: using a general mathematical model 
(including in particular the transfer laws), critically review the single phase flow case, and 
generalize to two-phase flows to improve the understanding of the two-phase critical flow 
phenomenon. As discussed above, the topics listed in the subtitle must be given particular 
consideration° 

The paper is an attempt to lay the bases for a rational modeling of critical two-phase flow. 
Rather than presenting a new model, it examines some fundamental points about critical flow 
modeling, such as the consequences of the form of the transfer laws on the critical phenome- 
non. This results in a general mathematical form which contains most current existing models, 
and should enable better models to be developed. 

Any comprehensive model must involve detailed transfer laws. In the present state of 
knowledge, this means a number of unknown coefficients which appear, from the practical point 
of view, as many adjustable constants: further work on the two-phase transfer laws is required. 
Only when this work is completed, can new models following the foregoing line be proposed. 
These models shall, of course, be compared to experimental data. 

2. M A T H E M A T I C A L  M O D E L I N G  

2.1. General equations 
The flow of a fluid in a pipe is governed by: 
1. the conservation laws: mass, momentum and energy; 
2. the constitutive taws which are the mathematical model of the fluid, such as the 

fundamental relation and the rheoiogical laws; 
3. the boundary conditions at the pipe wall and in the inlet and outlet cross-sections. 
It is beyond the scope of this paper to give the derivation of a practical set of equations from 

these bases, both for single- and for two-phase flow. These sets are given and discussed in Bour~ 

et al. 0975). 
The single-phase conservation equations used here are well-known. The two-phase 

conservation equations are based on works by Vernier & Delhaye 0968) and Bour~ & R~ocreux 
(1972). In spite of their nearly universal use, some of the assumptions made must be recalled here. 
They are classical in critical single-phase flow studies hut they cannot be extended without 

discussion to critical two-phase flows: 
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1. Two-dimensional effects are neglected. Taking these effects into account would increase 
very much the complexity of the models and, for this reason, is not current practice. However, it 
must be remembered that Henry (1968) and R6ocreux (1974) have shown that such effects may be 

present in two-phase flows, at least at low void fractions. 
2. In two-phase flows, surface tension effects are neglected, and the interactions between the 

phases are such that the pressure is uniform in any cross-section: po = pL = p. This assumption 
probably has major consequences since it affects the coupling between the phases. 

3. Diffusive and turbulence effects are ignored. However, it must be remembered that the 
presence of many interfaces is a characteristic of two-phase flow which certainly affects both 

diffusion and turbulence. 
Another assumption which deserves discussion concerns the form of the wall-friction and 

wall-heat transfer terms and, in the case of two-phase flow, of the interracial transfer terms. 
These terms take into account at one and the same time some of the rheological properties of the 
fluids and some of the boundary conditions. The forms of all these terms are of primary 
importance since they affect the mathematical character of the set of equations. Most practical 
applications involve small gradients of the dependent variables. In these applications, it is often 
sufficient to assume that the transfer terms depend only on abscissa z, time t and on the values of 
the other dependent variables (called hereunder x, to distinguish them, such as temperature T, 
velocity w and specific entropy s in the case of single-phase flow). However, as rather general 
flow conditions (such as high velocity, pressure or void gradients, rapid transients...) are 
considered in this paper, it is advisable to assume a more general dependency. For instance 
letting the transfer terms depend on z, t, on the xi's, and, linearly, on the first order derivatives of the 
xi's, is shown hereunder to be a significant imporvement. 

The corresponding form may be regarded as a Taylor series expansion, limited to the first 
order..Thus, the presence of derivatives corresponds to small history and neighbourhood effects. 
Such effects are not surprising, at least in the case of two-phase flow, when the structure of the 
flow is considered, @d they are probably more important than diffusive and turbulence effects. 

An assumption which is similar to the foregoing one has been made by Mfiller (1968) for the 
thermodynamic theory of mixtures: this is a simple way to take into account behaviors which are 
less restricted than those required by the ideal gas hypothesis. The assumption is particularly well 
suited for processes with important non-equilibrium effects and for mixtures in which the 
constituents are not uniformly distributed. 

An analogous situation also occurs in the field of single-phase flow turbulence and an 

interesting discussion on the philosophical problems raised by history and neighbourhood effects 
in constitutive relations may be found in Lumley (1970). 

Finally, the debatable point here does not seem to be the presence of derivative in the transfer 
laws. It is the limitation of the Taylor expansion to the first order, and this can be justified only a 
posteriori, by comparison with experimental data. 

2.1.1. Single.phase flows 
The practical set of equations may be written in terms of t, z and of the following quantities: 
Main dependent variables (x~): T, w, s. 
Other dependent variables: density p, friction pressure drop per unit of length, 9", heat transfer 

to the flow per unit of volume 9.. 
Other parameters: cross-section area A, projection on z of the gravitational acceleration- 

- g  cos O. With 

=~-; f ,  p~-., = p , .T=  
T ~ $' 

, 

a, =p, . .  \ap / ,  



4 

the conservation equations are 

Mass 

Momentum 

Energy 
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, aT+ , as+ aT+ Ow+ , a s _  A'  
pT.,-ff p , .T-~  p~.,wT; z PT£z P " T w ~ - - P W ' X ;  [I] 

aw+ , 2 aT + aw + , 2as 
p'~- p r.,a, ~-  pw ~z p ' r a r  ~'~ + J- = - pg cos 0 ; [2] 

~Os + _ as 
p1~7 o w l  Tz - wet - ~ = o. [3] 

In the transfer laws, to avoid too large a number of unknown functions, it is further arbitrarily 
assumed that the involved derivatives are restricted to the derivatives dxddt, with 
d/dr = (O[at) + w(a/oz).  

Friction 

' ' d , __. dx, pr., dT dw ~ s 
:3 r = t o -  ~ r / . -~-= to -  r/r-~-- d-~- r / .p -~- -  r/, w d-~' [4] 

Heat transfer 

.~ q o - ~  ~*dx~ . , dT dw , ds 
= ~, ~T = qo-  ~Tp T.,- ;K- ,,'.pw 7 T -  ~:'.p..T-a7, [5] 

~'o, qo, the 7/'s and the ( 's  depend only on z, t and on T, w, s (the form of the coefficients in [4], [5] 
has been chosen to simplify further handling of the set). When all the rW's and ~'s are zero, the 
classical form is obtained for the transfer terms. 

The set [1] to [5] is closed. Eliminating ~ and ~ from [1] to [3] by means of [4] and [5] yields 
a more convenient set of three first-order partial differential equations which it is not strictly 
necessary to write here. Due to the assumptions made, this set is linear with respect to the 
derivatives, which is also the case of most existing single-phase flow models. Hence the 
numerical solution of the set involves the determinant A of the coefficients of the a/az terms, and, 
for transients, the determinant A, of the coefficients of the 0/at terms (see sections 2.2. and 2.3.). 

2.1.2. Two-phase flows 
The subscripts K = G or L being used for quantities relating respectively to the gas and to the 

liquid phase, the practical set of equations may be written in terms of t, z, and of the following 

quantities: 
Main dependent variables (x~): ao (void fraction), p, wr., Aw (velocity difference wo - w L ) ,  

hhr (difference hr - hrsat between the enthalpy of phase K and the saturation enthalpy of the 

same phase) 
Other dependent variables: pK, ffK, ~x and M, (MV),  (MH),  (respectively mass-, 

momentum-, and energy-transfer terms from the liquid to the gas-phase per unit of volume, the 
complete expression of which can be found in Bour6 et al. 1975). With 
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, 
pJop,~ = p~h.p \ahx/~' h k " =  dp 4h/Z ~ iT L m I- CIO~ 

the conservation equations are (the upper sign is valid for K = G and the lower sign is valid for 
K = L )  

Mass 

. aaa+ , ap+ , OAhr+ w aa~+ , cgp 
_ p ~ - ~  ar.pr/p~at otgpglh,v at --pK g"~"Z OtrWl~K/P~a'ZZ 

aWL+ / aAw~ , aAhK . A' +a,,p,:-~z ~ao~-TT)~,,.~.~ +a,~wKp,o~.,-Tf-z ~f-a,,p,,w,,~; [6,,] 

Momentum 

aoto . , ftp . aWL+ / a A w~ + , a AhK 
p,,w,,w.. ,~w,,p, , , .~7., , ,~p,,-~7 t.~-Ti-).~.o.., ,,,<w,<p,<,~.. at 

__.,,,<,~,<= ~ + ,,,< (~ + w,<',, i<,,,,) ~ + 2,.,<,,,<,~,< tw" + (~,,<,,,o,~o ~ A,~ 
dZ O~. \ OZ / i f  KInG only 

, - aAha ~A' 
+ ctKwK pra~,'~'T-(MV)+ fix ffi -agpgjg cos O - axpKW~ ~" ; [7r<] 

Energy 

+ wK p kav,a + pKh k~t - Ot +_pK (hK .I. W___~_~) OOtG + OWL 
-~-  aK [ (h ;  2 ' )  1] ~t + axOgWx 

+t=ooowo-37-)~,,.~..+.~ h.+ O~,+OKj--T-_OKw~ h~+ oz 

+ aKwx [(h.+W'~-~)pkJ..Aprhk.t]~d-~z+arpr(hr + ' 2 - - }  'az 

W 2 

( • ( M H ) - . ~  = - a x o K w ~  cos 0 --axOxW~ hK + - ~ .  [8K] 

The functions ff.K arid ~K have the same form as in the case of single-phase flow. However, 
for the sake of simplicity, only the particular forms 

~',, = ~'x.o, [gK] 

• 9.K = qx.o [ 1 OK ] 

are used in this paper. 
The functions M, (MV), (MH) are 

8 .h i  . z a X i  u--Uo-E ~:,~-E~,Tz, 

(MV) = ( M Y ) o -  ~ ' ax, . Ox, 

[11] 

[12] 
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(MH)=(MH)o- ~ ' Ox, Z ~ ax._.j 
• t ' , ~ - ~ - -  . 1,'xf c~2 ' []3] 

~'K.o, qK.o, Mo, (MV)o, (MH)o, the A 's, the/~ 's and the v's depend only on z, t and on the xi 's. 
The set [6~ ]-[ 10K ], [11]--[13] is closed. Eliminating 3"~, ~K, M, (MV), (MH) from [6K ]-[SK] 

by means of [9K ]--[13] yields a more convenient set of six first-order partial differential equations 
which it is not necessary to write here. As in the case of single-phase flow, this set is linear with 
respect to the derivatives of the x,'s, which is also the case for most existing two-phase flow 
models. As in the case of single-phase flow, this leads to the consideration of the determinant A of 
the coefficients of the O/Oz terms, and, for transients, of the determinant A, of the coet~cients of 
the O/c~t terms. 

This important feature, which is shared by most practical single- and two-phase flow models, 
is the basis of the following discussion. 

2.2. Critical/low condition 
Several approaches have been proposed to obtain a critical flow criterion. Some of them are 

based on propagation phenomena; others involve the vanishing condition of some partial 
derivative of the fl0w-rate. In any case, as pointed out by Katto & Sudo (1973), the critical flow 
condition must result from the mathematical model of the system. A practical viewpoint is 
adopted here: starting from a set of inlet values for the x,'s the steady state values of all the 
dependent variables are calculated while proceeding downstream along the pipe, using the steady 
state version of either the single-phase or the two-phase set of equations. This process is not 
claimed to be the best to study critical flow. However, the results it yields apply to any flow model 
which involves only first order partial differential equations, linear with respect to the derivatives, 
which again is a very curren t case. The process is schematized by the flow-chart of figure 1, which 
is a support for the following discussion. Usually, notall the x~'s are givenat the inlet: the 
corresponding values are guessed and subsequently adjusted by iteration. 

Inlet conditions 
z=O i 

x, = x~ {0) 

r the above 
et conaitions 

is not critical 

may be critical 

31culotions with 
sliqhtly increased 

,sible critical 
)le, not critical 

is impossible 

~ller f low-rate 

is critical 

Figure i. 
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In a given cross-section, the calculation of the first order derivatives of the x,'s with respect to z 
involves a linear algebraic set of equations whose determinant is A (see sections 2.11 and 2.12). If 

higher order derivatives of the x,'s are needed, they can be calculated by differentiating the original 

set of equations; the new sets have the same determinant A. 
As long as A g 0, no singularity appears in the process, and complete numerical solution is 

obtained, the x~'s being obtained as Taylor expansions with respect to z. If ~ ~ 0 up to the end of 
the channel (z = L), there is one and only one solution; the inlet conditions can be slightly 

modified; the flow is not critical. 
If A vanishes in any cross-section, the problem is either impossible or indeterminate, 

depending on the fulfillment of a certain compatibility condition. In order to avoid lengthy 
developments, some particular cases are excluded here a pr/or/, namely: w = 0 (single-phase 
flow), wr = 0, a r  = 0, ,vr = 1 (two-phase flow). It is also assumed that the inlet conditions are 

such that the determinant A of the set of equations does not vanish at the inlet of the pipe. Thus, 
the calculation of the steady-state values of the dependent variables can be started inasmuch as 

these inlet conditions are known. 
N, being the determinant a where the ith column has been replaced by the R.H.S. members of 

the equations of the set, the compatibility condition, which yields a single equation, is that all the 
determinants N~ vanish simultaneously when A = 0. (N, stands here, as x, for the plural Nj's). 
Hence, the gradients N~/A of the dependent variables x~ take the indeterminate form 0/0 in the 
cross-section under consideration, and are not in general infinite, as often assumed. This is in 
agreement with observations made on actual physical systems (Rtocreux 1974). As it is well 
known from the theory of determinants, once, for some i, two distinct relations ~ = 0 and N, = 0, 
(with N, neither identical to zero nor divisible by A), are satisfied, all the other N, vanish. 

Therefore, the compatibility condition is generally given by an equation N, = 0. 
Remarks. Removing the indeterminacy involves calculation of the limits of N,/A. In some 

cases--e.g, see section3.1.1.--and for some x,, this calculation is quite easy. It is important to 
notice that in several cases--see section 3.1.2.--some of the N, are identical to zero. 

If the compatibility condition is not satisfied when A = 0, then the problem is impossible. 
Impossibility means that some of the values assumed for the x, at the inlet are not realistic. 

If all the N, are equal to zero when A = 0, then the just-mentioned indeterminacy occurs, and 

two situations must be distinguished, depending on the form of the N,. The determinant N, is like 
/x, a function of the L.H.S. coefficients (x,, ,,, ~, . . . .  ) and, unlike A, a function of R.H.S. quantities 
(A '/A, g cos 0, ~-o, qo . . . .  ). Since all these coefficients and quantities are known functions of the x, 
and of z, the determinants A and N, are functions of the x, and of z. 

In some particular cases, for any i, the quantities 

A 

are always well-defined, even in the sections where A = 0. Here, N, must be zero as soon as A = 0, 
and the compatibility condition is identically verified (For example, all are zero because of a 
common factor). The gradients 

dx, N, 

remain defined in any section where A = 0. The inlet value of any of the x, may be slightly 
modified without inducing impossibility. In particular, the flow-rate can be increased. The only 
noticeable effect of such a change is to shift or to eliminate the indetermination section. The flow 
cannot be termed critical in the sense implied in the introduction of this paper. 

Usually, if the compatibility condition is verified when A = 0, it is not identically, i.e. N~ = 0 
due to the local values of the previously-mentioned R.H.S. quantities. Generally, in such a case, 
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depending on its sign, a slight modification of one of the x,'s inlet value either induces 
impossibility (the A = 0 and N~ = 0 cross-sections being differently shifted) or eliminates the 
indeterminacy (the A = 0 cross-section being eliminated): the flow is said to be critical. The 
corresponding section is the critical section. According to the physical experience, the flow-rate 
can be decreased (eliminating the indeterminacy) but not increased (inducing impossibility) when 
the flow is critical, the inlet conditions except the flow-rate remaining unchanged. 

To summarize: 

A = 0 [14]  

is a necessary critical flow criterion. It involves only the L.H.S. of the equations and in particular 
neither A ' / A  nor 0. Its study must be complemented by that of the compatibility condition: 

N, = 0 [15] 

where the choice of i may be subject to some restrictions. The compatibility condition involves 
R.H.S. quantities (and among them A ' / A  in general). It allows determination of the actual 
character of the flow, (i,e. critical or not) and, if the flow is critical, of the critical section. In single 
phase, horizontal nozzle flow without friction nor heat transfer, it explains, for instance, why the 
critical section is the throat of the nozzle. 

2.3. Propagation of small disturbances 
The application to transients of the procedure used to introduce the critical flow condition, i.e. 

trying to calculate the values of the dependent variables, leads directly to the theory of 
characteristics (Courant & Friedrichs 1961). 

The dependent variables x, being given along a curve, tangent to the direction V in the (t, z) 
plane, the set of partial differential equations is complemented by the relations expressing the 
total derivatives of the x, in the direction V, i.e. 

Dx,= ~ + vax....~.~ 
Dt at Oz " 

In the set of equations, the partial derivatives, with respect to one of the two independent 
variables, can then be expressed in terms of the known total derivatives and of the partial 
derivatives with respect to the other independent variable (for instance 7.). For single-phase flow 
a set of three linear algebraic equations with three unknowns, 

OT Ow Os 
OZ ' 07, ' 07, ' 

is obtained. For two-phase flow, a set of six linear algebraic equations with six unknowns, 

Oa~ Op OwL O A w O A i ~  O AhL 

Oz ' Oz '  az ' Oz ' Oz ' Oz 

is obtained. 
In each case, the characteristic equation is written by equating to zero the determinant of the 

set. Solved for V, it gives the displacement velocities of small disturbances. It can be easily 
verified that the constant term in the characteristic equation is the determinant A of the set used 
in section 2.2. Hence, when A = 0, one of the roots of the characteristic equation is V = 0, i.e. a 
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stationary small disturbance can exist. The detailed analysis of the other roots of the 
characteristic equation is presented elsewhere (see hereunder and Fritte 1 9 7 4 ) .  

3. R E V I E W  OF T HE  S I N G L E - P H A S E  F L O W  CASE 

3.1. Critical condition 
The critical flow criterion [14] involves the determinant A of the set of single phase flow 

equations written for steady state. A is a third order determinant. Equation [14] can be written: 

A n  
wp ~,, p wp ;.r I 

p~-., (a,=- v/r) pw(1 - V/,) , 2 p , . r ( a r  -- V/, ) = O, 1 wp~.,(~;r + v/r) w=p(£,, + V/,,) wp'.r[LoT/p;.r) + ~, + v/,] 

or by developing and dividing by w, which eliminates the root w = 0: 

pp~,,p',rw ==[ (w2-a '=)+(~r -  w=v/')] . + [ (w2-a '=)+(v / r -  w=v/")]([" + v/') 

- [ ( w ' -  a~ )  + (v/. - w'v/.)}(~r + v/r) + w ' [ ( a ? -  a~)  + (V/. - v/r)](~:, + ~ . )  = 0. [16] 

This is the general expression of the critical flow criterion. It can be used to study any particular 
case. To demonstrate the poss~ilities of the method, three examples are studied hereunder. In 
the first of them, the V/, and [l, i.e. the external constitutive laws, are given. In the other two, the 
evolution of the fluid is given. 

3.1.1. Cases with differential terms in the external constitutive laws 
For illustration purpose, it is sufficient to take into account a rather limited number of parameters 

v/~ and ~,. Assuming v/r = V/, = V/, = 0,[16] can be written: 

w 2 = a2_  (a2_ at2) ;2g:w - ~r . 

pP'.,r + ¢" - ¢ ' r  

3.1.1.1. When 

[17] 

~.r = w2~ .  # ~ ,  + .pT 
p ' , r '  [ ] 8 ]  

which is in particular the case when ~r = ~, = ~, = 0 [17] is satisfied for 

W = Wc --- +---am 

(isentropic sound velocity). The expressions of the determinants N~ can be written: 

Nr, = w  + ro+PgCOS0-pw 2 - w ~ r  T o + p g c o s O - p a  
pp sot 

- (qo + Wro)(W 2 -  aT=), 

wp T.,p' =.T' = w + ~$ pa, . - ~ -  To- pg cos 0 - w~r ~"  - ~'o - pg 

+ (qo + Wro) (a," - a~=), 

) pp~ ,=  P W - ~ T + q o + W T o  (w2-a,:). 
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The indeterminacy of ds /dz  can be easily removed, since everywhere along the pipe, and in 
particular in the critical section: 

A'  
ds pw " ~  ~r + qo + W'ro 

This shows that the evolution of the fluid is not isentropic in general. It is isentropic if and only if: 

A'  
p w -  K ~r ~- qo + Wro = O. 

Such is the case within the framework of the current assumption ~'T = 0 when qo + w~'o = 0. This 

implies through[18] that ~',, = 0 and ~, # pT/p;.T, conditions which are compatible but a little less 
restrictive than the current assumptions ~T = ~L = ~, = 0. 

Since N, = 0 when A =0 ,  it cannot be taken as the compatibility relationship. This 
compatibility relationship is the vanishing condition of NT and N, ,  and it enables the critical 

section to be determined: 

A'  w,(~'o + pg cos 0 ) ( P 7  T + ~', - ~'T)-(qo + w~'o)(a. 2 -  a~) \p ,.r 

3.1.1.2. When 

pT + ~, = w2~,, # ~'T, [20] p ' . r  

[17] is satisfied for 

w = wc = +--aT. 

The expressions of the determinants Nl can be written: 

NT ~._(w 2 _ a ~ )  (qo+ w,ro + pw3 ~ ~ ) ,  
pp~,r 

Yw A '  2 2 
wp ~.,p ;.r = pw - ~  [ a, w ~,, - a ?  :T ] + w(~o+ pg cos 0 ~ T  -- W ~ : .  ) ÷ ( qo + W~'o)( a, z -  ar2), 

N, A' 
PP ~., = pw ' ~-- [~'T - a,2~r,, ] + w (~'o + pg cos 0)(w 2~'w - ~'r) + (qo + Wro)(W 2 _ a Z). 

The indeterminacy of dT/dz  can be easily removed, since everywhere along the pipe, and in 

particular in the critical section: 

~A' 
d T  pw --~ ~w + qo + w1"o 

dz wp~.,(w2~w - ~'r) 

The evolution of the fluid is not isothermal in general. It is isothermal if and only if: 
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At 
pw3 "7 - [w + qo + wro = 0. 

/ ' 1  

Such is the case within the framework of the current assumption ~w = 0 when qo + W~,o = 0. 
Further, as ~'T~ 0, these assumptions are not compatible with the current assumptions 
~T = ~w = b  = 0 .  

Since Nr = 0 when A= 0, it cannot be taken as the compatibility relationship. This 
compatibility relationship is the vanishing condition of Nw and N,, and it enables the critical 
section to be determined: it has the same analytical expression as [19]. 

3.1.1.3. When 

= < , - ~ + ~ ' , ,  or _,-~-+l:,<w2(w<~T, ~r < W ~:w p,,r p,.T 

[17] is satisfied for w = w~, where 

a~'<lwcl<a.. 

By the extension of the ideal gas results, this value could be called a "polytropic sound velocity". 

3.1.2. Isentropic Jtow 

This case is dealt with here to stress the fact that, when the evolution of the fluid is postulated 
as a substitute for the unknown transfer laws, fundamental interpretation problems are 
encountered. These problems can only be solved if the transfer terms involve derivatives. 

The flow is isentropic if and only if the condition ds Idz ffi 0 is contained in the solution of the 
set of equations. This implies that the condition N, = 0, involving the R.H.S. of the equations, is 
satisfied everywhere along the pipe, i.e.: 

( A' ) 
N,  x,, ~,, ~r4, ~ - ,  g cos O, ~'o, qo = O. [21] 

The physical significance of this condition is that, for an isentropic flow to be achieved (with a 
given fluid, a given geometry and a given range of x~) a constraint [21] has to be satisfied by the 
external constitutive laws, i.e. by both the boundary conditions and the transfer laws. It is 
satisfied for instance in the classical case , ,  = ~ ffi 0 when ro = qo = 0. 

In all the sections where A # 0, and because N, = 0, the set may be considered as a compatible 
set of 3 equations with only 2 unknowns, and it is equivalent to any subset of 2 of the equations, 
provided the determinant of this subset is not zero (Bour6 & Rtocreux 1972). The same is true by 
continuity in any isolated section where A vanishes. Since the solution may be determined with 
any of the above subsets, the discussion of section 2.2. must be applied to these subsets. The 
consequences are: 

(a) For the flow to be critical, it is necessary (see R~)creux 1974, p. I, 111), that the 
determinants 6, * of a / / the  above subsets vanish simultaneously, 8, ~ being obtained from A on 
removing the column of the coefficients of dsldz and the ith row. 

Conversely, the theory of determinants shows that if, in a given cross-section, two of the 
subset determinants 8, j and 8/vanish, i and j being arbitrary, except for some particular cases, 
the other subset determinant also vanishes, A = 0, and N, = 0. 

Accordingly, for an isentropic flow, [14] may be replaced by more specific necessary critical 
flow criteria: 

~,' = 0, 8 j  = 0, [22] 

where the choice of i and j (i # j) may be subject to some restrictions. 
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(b) When criteria [22] are verified, the compatibility conditions of all the subsets are 
equivalent in general. One of these compatibility conditions (an arbitrary one, except for some 
particular cases) must be used instead of [15]. 

The necessary critical flow criteria [22] may be written: 

! 

I W 
! 

p p w ( 1  - r l w )  I 

w p r.s p p r., 
T., ( a s  2 - ~'/T) = 0 a n d  ' w p ~ . , ( ~  + "Or) 

They yield: 

w 2 _ a, 2 = W2'O w -- t i t  , 

The compatibility condition may be taken as 

- p w ( A ' / A )  

- ~ ' o -  pg  Cos 0 

i.e. 

P [=0,  
pw(1- r/,) 

2 ~ 0° 

[23] 

[24] 

A t  

pw:(1 - "r/~)-~- = ro+pg c o s  O. [25] 

Equations [23] and [24] are the critical flow conditions. Equation [25] determines the position of 
the critical section. The results of section 3.1.1. I. for an isentropic flow appear as a particular case 
of the foregoing. 

Equations [23] and [24] show that, f o r  an  i s e n t r o p i c  f l o w  to  be  cr i t ical ,  a n e c e s s a r y  c o n d i t i o n  

on the 71, and ~'~ is 

~'T + 'OT ---- a, 2 -- Y/r 
¢. +'o. 1- 'o .  

When this is satisfied 

2 
W c  2 = (Is - -  ~ T  

1 -  71~ 

Thus, when the ~, and ~'~ are not known, [22] may be interpreted as consisting of a relationship 
between the 'O, and ~,, and an actual critical flow criterion (here, [24] happens to correspond to 
[18], and [23] to [17]). If the isentropic flow critical phenomenon is considered as well known, the 
above equations give information on the external constitutive laws. For instance, wc =---a, 
implies through [23] and [24] that in the critical section: 

7/r w2'ow and ~r 2 - ~ W  ~w. 

3.1.3. I s o t h e r m a l  f l o w  

The discussion parallels that of section 3.1.2. The equations giving the critical velocity and the 
condition verified by the external constitutive laws in the critical section are: 

w: - a~ = w2~w - ~,  [26] 
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w:((w + ~w) = _p_~_T + ~, + ~7,. [27] 
p $.T 

The critical section is determined by [25]. The results of section 3.1.1.2. for an isothermal flow appear 

as a particular case of the foregoing. 

3.1.4. Discussion 
The possibility of generalizing, i.e. of obtaining critical velocities different from a, and dealing 

with any flow evolution, is a consequence of the presence of differential terms in the external 
constitutive laws. Taking these terms into account is not common practice. It is pointed out, 
however, that some authors (see Brun et al. 1968) implicitly use differential terms, in ~, to study 

isothermal flows. 
Without differential terms, the classical result is always obtained: the velocity of the fluid in 

the critical section is equal to the isentropic velocity of sound, whatever the evolution of the fluid 
may be. To explain deviations from this isentropic sound velocity, a possibility is therefore the 

presence of differential terms in the constitutive laws. 

3.2. Propagation of small disturbances 
The characteristic equation (see section 2.3.) is: 

p~..(w - V) p 

p ~ . , [ a , : - ~ ( w - V ) ]  p ( 1 - ~ . ) ( w - V )  

p~.,(& + nT)(w - V) pw(( .  + n . ) (w - V) 

p'.T(w - V) [ 

p ' . r [ a r : - ~ ( w -  V)] i =0. 

V = w (material velocity) is always a root of this equation. The two others are given by 

- [ ( w -  V)~-ar2+~(w - V ) - ~ w ( w - V ) : ] ( ( r + ~ r )  

+w(w-V)[a,2-ar=+ ~" w ~r(w - V)] (~'w + rlw) = 0, 

which may be compared to [16]. Developing [28] yields: 

[28] 

\ p  , .r  

- V [2w(1- TOW) (p,~r + ~, - 'r) + 2w(rl, - ~Or)(l + 'w) 

w ~, .r  / - ' w  ~r+w(a'2-a2)(~w+~w) ÷ ppr.,p' 'w,.r = 0 .  [29]  

When the flow is critical, A = 0 in the critical section and, as already pointed out in section 
2.3, V = 0 is a root of the characteristic equation. The remaining root can be computed through 
[29]. It is 

"~(  PT+ ~,) - ~  ~r+ wc(a,2-ar~)(~, +nw) 
Vc = 2wc + wc \p',r 

(1 - ~,)  ( P'~T + ~, - ~r) + (~, - r~r)(l + ~,) 
\ p  ,,T 

[3o] 
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It results from the interpretation of the single-phase flow critical conditions, as given in the 
introduction, that V¢ and w¢ must have the same sign, so that disturbances initiated downstream 
of the critical section cannot propagate upstream of this section. 

Only some of the examples developed in section 3.1.1. are studied hereunder. 

3.2.1. No differential term in the external constitutive laws 

When all the *1~ and ~ are zero, the roots of the characteristic equation in th¢~ critical section 
age 

0, w, 2we. 

This is the classical result. " 

3.2.2. Some particular cases with differential terms in the external constitutive laws 

Assuming "Or = 7/,, = r/, = 0, [30] can  be written: 

3.2.2.1. When 

(a.  2 - a ~ ) ~ .  

V~=2w~+w~ pT + ~ _ ~ r  

p',.r 

[31] 

3.2.2.2. When 

I 
] as2 

0, we, wo 2 +  y - 1  (7  wi th  V =a-~T" 
y pT +~, -IT 

p'.r 

w~ = +-a, and the roots of the characteristic equation in the critical section are 

Since they must have the same sign, ~'r must not be comprised between 

PTT+~, and 2Y (p~TT+~). 
p,.r y + I 

Such is of course the case within the framework of the current assumption ~'s = 0, (r  = 0. 

p,T + ~. = wZ~...~ ~r, [20] 
p s.T 

wc = ---aT and the roots of the characteristic equation in the critical section are 

] 
0, we, wc 2 + ( y - 1 )  a ~ w _ ~ r j .  

Since they must have the same sign, ~rT must not be comprised between a ~ w  and [(y + 1)/2]a~ (~. 

3.2.3. Discussion 
The presence of differential terms in the expressions of the external constitutive laws is fully 

compatible with the classical interpretation of the single-phase critical phenomenon in terms of 

~ = w2~w ~ ~. + p T  rl8] 
p~.r ' 
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propagation of small disturbances. The study of the propagation velocities discloses however that 
the values of the ,,  and K~ are subject to one restriction: the R.H.S. of [30] must have the sign of 
Wc. 

4. TWO-PHASE FLOWS 
4.1. Critical condition 

The critical flow criterion [14] involves the determinant A of the set of equations written for 
steady state. A is a 6th order determinant. The resulting equation, [32], is given in figure 2. 

This general expression of the critical flow criterion enables any particular case to be studied. 
Two models have been chosen to demonstrate the possibilities of the method: a two-velocity- 
two-temperature model (R6ocretLx 1974), where the critical flow criterion is given by the 
vanishing condition of a sixth order determinant, and a partial non-equilibrium model (Giot & 
Fritte 1971), involving a fifth order determinant. This choice is given only for purposes of 
illustration and is more or less arbitrary. It does not lay any claim as to the actual value of the 
models. Other models are considered in Bour6 et al. (1975). 

As for single-phase flows, two different points of view are adopted: firstly, particular sets of 
values of the X?, ~" and v~" are selected. Secondly, the evolution of the fluid is prescribed. 

4.1.1. Selected values of the coeMicients Ai z, t~i Z, vl z 

4.1.1.1. Two-velocity-two-temperature model, with no di~erential terms in the constitutive 
laws. All the M,/~," and v," are zero. Equations [11-13] are reduced to: 

M = Mo, (MV) = (MY)o, (MH) = (MH)o 

which are functions of z, ao, p, WL, AW, Aho and AhL only. 
Introducting these conditions in the criterion [32] and developing the determinant A yields: ' 

where the following thermodynamic relationship has been used: 

[33] 

XOhK/p k Op /.," 

The critical flow criterion [33] can be expressed in terms of the square of the mass flux density: 

3 3 
aO ~ _  aL pL 

oo Tp .o 

[34] 

the quality x being defined as the ratio aopowo/G. The rather complicated compatibility 
condition enables the critical section to be determined. 

4.1.1.2. Partial non-equilibrium model. For the v?, the following equalities and inequality are 
assumed: 

~ -powo ( i~  w 2 
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V~L ffi vzA,~ = -aopo (hG " 3W~'~ *--i-? 

VLL=O, 

v~o:~-aowo [(hG + W"~) P~,~ + Po]. 

The energy equation of the gas phase written for steady state becomes: 

{ aowo [ ( ho + W..~) p ~h.p + po] + , "l. d(Ah° ) vhoj dz = (MH)o+ qo.o- aopoWog cos 0 

T" [35] 

On developing the determinant 4, one obtains: 

A f {aowo [ (ho + W"~) P~h.p + Po] +.v'ho] As 

where As is the determinant of a fifth order subset. The critical flow criterion a = 0 is thus 
equivalent to % = 0. The compatibility condition enables the critical section to be determined. 

In particular if the R.H.S. member of [35] is assumed to vanish then (/to -/lo,,,) remains 
constant. If moreover ~z = ~ , / = ? , ~ L = , C , w = , ~ L = /  , = /~ /  = /  . , L f / ~ , f / ~ L = 0 ,  and 
/~ ffi ho,t,  then the critical flow condition A5 = 0 takes the form of one of those proposed in the 
literature (Giot & Fritte 1971). The determinant ~ no longer involves any of the k,, I~, v~. The 
elements of its last row are identical to those obtained by summing up the energy equations of the 
gas and liquid phases: the result is the same .as if a single mixture energy equation were used 
instead of two phasic energy equations. It can benoticed that the same result is obtained with at 
least another set of values for the v,, i . e .  

W 2 

4.1.2. Prescribed evolution 

As in the case of single phase flow (section 3.1.2) the consequences of prescribing an 
evolution of the fluid must be investigated. 

This study is restricted to the example of flows with constant non-equih'brium of the gas 
phase: 

d(Ah~) = 0. 
dz 

If such a condition is contained in the solution of the set of equations, it implies that a condition 
N~,hG = 0, involving the R.H.S. of the equations is satisfied everywhere along the pipe, i.e.: 

z z 
N.ho xi, ~ ,  ~ ,  ~i, Mo, (MV)o, (M/'/)o, , g cos O, ~o ,  qK.o "O. [36] 

The physical significance of this condition is that, for constant non-equilibrium to be achieved 
(with a given fluid, a given geometry and a given range of xi), a constraint [36] has to be satisfied 
by the external constitutive laws and the interracial transfer laws. 

MF Vol. 3 No. |--B 
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In all the sections where A # 0, and because NahG----0, the set may be considered as a 
compatible set of six equations with only five unknowns, and it is equivalent to any subset of five 
of the equations provided the determinant of this subset is not zero. The same is true by 
continuity in any isolated section where A vanishes. Since the solution may be determined with 
any of the above subsets, the discussion of section 2.2. (critical flow condition) must be applied to 
these subsets. The consequences are: 

(a) For the flow to be critical, it is necessary that the determinants A~ho of all the above 
subsets vanish simultaneously, A~,ho being obtained from A on removing the column of the 
coefficients of dAha/dz and the ith row. 

Conversely, the theory of determinants shows that if, in a given cross-section, two of the 
subset determinants ' A,hG and A~ha vanish, i and j being suitably chosen, the other subset 
determinants also vanish, A = 0 and Na~G = 0. 

Accordingly, for a flow with constant non-equilibrium of the gas phase, the critical flow 
criterion [14] may he replaced by more specific necessary critical flow criteria 

i m Aah~- 0, A~h~ = 0. [37] 

(b) When [37] are verified, the compatibility conditions of all the subsets are equivalent in 
general. One of these compatibility conditions must he used instead of [15]. 

The results of section 4.1.1.2 for a flow with constant non-equilibrium of the gas please appear 
as a particular ease of the foregoing. Like criteria [22] for single-phase flows, criteria [37] may be 
interpreted as consisting of a relationship between the At ~, /~,~, v, ~, (corresponding to the 
assumptions of section 4.1.1.2) and an actual critical flow criterion (corresponding to As = 0 in 
section 4.1.1.2). 

4.1.3. Discussion 
The conclusion is analogous to that of section 3.1.4. for single-phase flows: the same result 

(section 4.1.1.1) is always obtained for two-phase flows when the presence of differential terms in 
the constitutive laws is not accepted. However, when for single-phase flows the isentropic sound 
velocity is in general a very good approximation to the actual critical velocity, the result of 
section 4.1.1.1 for two-phase flows is bad. This is true both practically, since it predicts critical 
velocities which are several times the actual ones, and theoretically, since it does not allow for 
any influence of the interfacial transfers on the critical phenomenon (Rtocreux 1974). 

To obtain other results, and in particular to find and to justify existing models whose results 
are closer to the experimental data, a possibility is to allow for the presence of differential terms 
in the constitutive laws. Examples have been given in sections 4.1.1. and 4.1.2, with differential 
terms present only in the interracial transfer laws. Any model, if consistent, appears as a 
particular case of the model used here, complemented by appropriate assumptions on the 
constitutive laws. Since the six phasic conservation equations, based on the conservation laws, 
have to be satisfied anyway, this result is entirely satisfactory. 

Although occasionally differential terms have already been used (see for instance Wallis 1969 
and Ivandaev & Nigmatulin 1972) their importance does not seem to have been fully realized. 
Physically, their influence proceeds from the fact that they strongly affect the coupling between 

the phases. 

4.2. Propagation of small disturbances 
This section should parallel section 3.2. However, it is not possible to give here the most 

general characteristic equation (corresponding to [28] or [29] of the single-phase case) due to its 
size. The L.H.S. of this equation is a polynomial in V of the sixth order. When the flow is critical, 
V = 0 is a root of the characteristic equation in the critical section. Since there are 5 remaining 
roots (real or complex), it is not possible to obtain analytical expressi0rts, corresponding to [30], 
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for them. This difference is, however, due only to the increase of the order of the equation and, 
for two phase cocurrent flows, there is no reason, up to now, to dismiss the classical 
interpretation of critical flow conditions, as given in the introduction: a flow is choked when 
disturbances initiated downstream of some critical section cannot propagate upstream of this 
section. 

Accordingly, when the roots Vc of the characteristic equation are real, they must either be 
zero or have the same sign as we and WL. The presence, often found out in existing models, of 
one pair of conjugate complex roots raises a problem which is specific to two-phase flows and is 
still controversial (cf. for instance, round table RT-1 on momentum and heat transfer mechanisms 
in two-phase flow, held during the 5th international heat transfer conference--Tokyo, September 
1974). They probably correspond also to the propagation of "something" (Fritte 1974) and their real 
part must also have the same sign as we and WL. AS found for single-phase flows, these restrictions on 
the signs of the roots of the characteristic equation correspond to restrictions on the values of the ,~,, 
p.J, vi. 

Two examples are given hereunder. 

4.2.1. No di~erential terms in the constitutive laws 
The case when all the A,,/zj, v~ are zero has been studied at length by Bout6 (1973). Four roots 

of the characteristic equation are real and have, in the critical section, the same sign as we and 
wL ; they are: V, = 0, V: = we, V3 = WL, we + ao, < V, < WL + aL,, where no, and aL, are the 
single-phase isentropic sound velocities in the gas and liquid phase, respectively. When the two 
remaining roots are complex and conjugate, which is always the case with current values of the 
critical parameters, their real part has the same sign as wo and WL (Fritte 1974). 

4.2.2. An example with di~erential terms in the constitutive laws 
A relatively simple example is obtained when only momentum is transferred at the interface, 

i.e. Mo = (MH)o = O, A~ = v~ = O. Moreover, all the/~ are assumed to be zero, excep t /~  and/~p'. 
Simple algebraic transformations on the determinant of the LH.S. of the characteristic equation 
show that it has the roots V = we, V = wt., and the roots of 

pL(WL- V)2 {ao[p~jp.,(wo- V)2-1]-( l~Z- t .h , 'V)  [1-P~/h'P w o ( w o -  V)] } pe 

+ p c ( w e -  V) 2 {ac[pb,.,(wL - V) 2-  I]+(/~ z -/~'V)[1--P£Jk'PWL(WL--pL V)]}-- 0, [38] 

which can be compared to [3] in Bour6 (1973). Further simplification can be obtained by assuming 
that the terms containing pk~,  are negligible in this equation, which is true for water within a 
large range of pressures and velocities. 

Divided by popL, [38] yields: 

n o  p t ' ~ " +  aL pb ' '? )  (wo - V)2(wL - V) ~- 
po pL / 

(wL - V) ~ (wo - V) 2 
O~G -- O~L 

pG pL 

--([.kpz--Ij,plV)[.(WL-~GV)2 (WG -- V)2 ]  ~. O, 

pL 

or assuming low pressure (pO/pL "(1), significant void fractions and reasonable slip ratios, 

~"~.-L - V) 2. [,~pt,,,.,(wo - V ) ~ - ( a o  + v J  ) + ~ , 'V ]  = O. 
po [39] 

It has, twice, the root V = WL, which thus appears to be triple in the complete characteristic 
equation. 
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When the flow is critical, V = 0 is a root of the characteristic equation in the critical section. 
Hence 

O[ P W 2 " cO G/~,., ~c - (or6 +/z~," ) = 0. 

Let r be defined by 

a o  +/~p = , : ,  ~ [wo,'¢, 
r . . . .  a~ pol~,,wo, = \a-"~o, / [40] 

so that 

~p-" = -(1 - r)a~. [41] 

Experimental data on critical flow rates and slip ratios imply that r, comprised between 0 and 1, is 
significantly smaller than 1. Conversely, [40] shows that it is possible to fit the model to the 
experimental critical data by adjusting only the coefficient r. 

The remaining root is easy to calculate from [39], taking [40] into account. It is 

V = 2wc~c ~"  [42] 
otGp b/p., ' 

and has the sign of w~c if, and only if 

/zv' 2a~ 
w~ < a - ' ~ o ,  ° [43] 

To summarize, the roots of the characteristic equation in the critical section are V, = 0, V2 = wa, 
V3 = WL, V4 = WL, V~ = wL, 

1 

V6= 2wo, - l~p 
otGp o/p,s 

They have the same sign as wo and WL, provided the restriction [43] is satisfied. 

4.2.3. Discussion 

A s  found for single-phase flows, the presence of differential terms in the expressions of the 
interracial transfer laws is fully compatible with the interpretation of the critical phenomenon in 
terms of propagation of small disturbances. To the restriction on the values of the rig and ~ in 
single phase, correspond here restrictions on the values of the h,/~,, v~. 

5. CONCLUSIONS 

5.1. To improve the understanding of two-phase critical flow phenomena, it has been found 

useful to study in parallel both single- and two-phase flows. It has also been pointed out that to 
postulate the transfer laws, which are the causes of the evolution of the fluid, is more rational 
than to assume a priori the nature of this evolution. This point is especially important for 
two-phase flows because of the presence of inteffacial transfers, which are deemed to play an 

essential part in mixture evolution. 
5.2. In the "classical" analysis, the transfer terms present in the equations are assumed to be 

only functions of space, time, and of the dependent variables used to describe the flow. Within 
this frame, the results found for critical flow rates and propagation velocities of small 
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disturbances are always the same (when all the conservation equations are used, which is, of 
course, imperative): 

For single-phase flows, the critical velocity is the isentropic sound velocity, which is generally 
in agreement with the experimental data. 

For two-phase flows, the calculated critical flow rate [34], is not in agreement with the 
experimental data. Moreover, unlike what may be expected, it does not depend on the inteffacial 
transfer phenomena. 

5.3. A consequence of this uniqueness is the incompatibility of the various existing two-phase 
models, which give different results: it is not possible, starting from a general model and making 
appropriate assumptions, to arrive at these existing models. 

5.4. To get rid of the foregoing drawbacks, it is proposed here to adopt a more general form 
for the transfer laws, i.e. to allow for the presence in their expressions of partial derivatives of 
the dependent variables. The examples dealt with in the paper show that this is a promising 
hypothesis: results other than those recalled above (5.2) can be obtained, such as a "polytropic" 
critical velocity for single phase flow or the results of existing models for two-phase flow. The 
importance of the foregoing differential terms proceeds from the fact that they strongly affect the 
coupling between the phases (or between the fluid and the wall). 

5.5. The critical flow condition has been mathematically studied: a necessary critical flow 
criterion is obtained by equating to zero the determinant of the set of equations describing the 
steady state flow [14]. 

This criterion must be complemented by-the study of the compatibility condition of the set 
[15]. It is to be emphasized that the gradients of the dependent variables are generally not infinite 
in the critical section. 

5.6. It has been verified that a flow is critical, with two phases as well as with a single pha:e, 
when disturbances initiated downstream of some "critical" section cannot propagate upstream of 
this section. Thus a decrease of the outlet pressure, for example, has no effect on the flow 
parameters upstream of the critical section. As a result, the flow rate cannot be increased further. 
The presence of differentialterms in the expressions of the transfer laws is fully compatible with 
this interpretation. 
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